السبب ٢١ تموز ٢٠١٨

مباراة دخول _ إدارة الأعمال

الجامعة اللبنانية كلية العلوم الاقتصاديا وإدارة الأعمال

الاسم: الرقم:

مسابقة في مادة الرياضيات المدة: ساعتان

I- (4 points)

In the table below, only one among the proposed answers to each question is correct. Write the number of each question and give, with justification, the answer that corresponds to it.

N°	Questions	Answers		
		a	Ъ	c
1	If $C_{n^2+n}^2 = 1$, then $n =$	1	2	3
2	For all real numbers x, we have $ln(1 + e^{-x}) - ln(1 + e^{x}) =$	0	-x	x
3	The solution set of the inequality: $(e^{x} - 1)(1 - e^{-x}) > 0 \text{ is:}$	R]- ∞;1]]-∞;0[∪]0;+∞[
4	 (Δ) and (Δ') are two parallel lines A, B, C and D are 4 points on (Δ). I and J are 2 points on (Δ'). Then the number of triangles formed by the 6 points A, B, C, D, I and J is: 	16	C ₆	$C_2^1 \times C_4^2$

II-(4 points)

Consider three urns U, V and W. Urn U contains 3 red balls and 2 black balls, urn V contains 2 red balls and 3 black balls and urn W contains 3 red balls and 3 black balls.

A- A random experiment consists of drawing a ball from U: if the ball is red we put it into V and if it is black we put it into W then at the end we draw two balls: one ball from V and one ball from W.

Consider the following events:

- R: « the ball drawn from U is red»
- C: « the ball drawn from V is red and that drawn from W is also red »
- 1) Calculate the probability P(R), P(C/R) and verify that P(C \cap R) = $\frac{3}{20}$.
- 2) Prove that $P(C) = \frac{153}{700}$, then calculate $P(\overline{R} \subset C)$.

 $\mbox{\bf B-In}$ this part, the balls of the urns $U,\,V$ and W are all placed in an urn T .

Then we draw randomly and simultaneously three balls from T.

Let X be the random variable that is equal to the number of red balls obtained.

- 1) Calculate P(X = 0) and $P(X \le 1)$.
- 2) Calculate $P(X \le 2/X \ge 1)$.

III- (4 points)

On a certain date, Fadi deposits in a bank an amount of 20 000 000 LL at an annual interest rate of 9% compounded monthly. Every month and after the compounding of interest, Fadi withdraws 300 000 LL to pay the rent of his apartment. For all integers $n \ge 0$, denote by u_n the amount of money that Fadi has in this bank after n months. Thus $u_0 = 20\,000\,000$.

- 1) Calculate u_1 then verify that $u_{n+1} = 1.0075 u_n 300 000$.
- 2) For all integers $n \ge 0$, let (v_n) be the sequence defined as: $v_n = u_n 40000000$.
 - a- Prove that (v_n) is a geometric sequence with common ratio 1.0075 and whose first term v_0 is to be determined.
 - b- Prove that $u_n = 20\ 000\ 000 \times \left[2 (1.0075)^n\right]$.
 - c-Prove that the sequence (u_n) is strictly decreasing.
- 3) The 9% annual interest rate proposed by the bank is not sufficient for Fadi in order for him to pay the rent of his apartment for 8 years. How much money does he still need? Justify.

IV- (8 points)

Part A

Let f be the function defined on IR as $f(x) = 1 - xe^{x-1}$.

- 1) Determine $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 2) Show that $f'(x) = -(x+1)e^{x-1}$ and set up the table of variations of f.
- 3) Calculate f(1) then study, according to the values of x, the sign of f(x)

Part B

Let g be the function defined on IR as $g(x) = x + 1 + (1 - x)e^{x-1}$.

Denote by (C) the representative curve of g in an orthonormal system of axes $(0; \vec{i}, \vec{j})$.

- 1) a) Study, according to the values of x, the relative positions of (C) and (D).
 - b) Determine $\lim_{x \to -\infty} g(x)$.
 - c) Show that the line (D) with equation y = x + 1 is an asymptote to (C) at $-\infty$.
- 2) Show that $\lim_{x \to +\infty} g(x) = -\infty$.
- 3) Show that g'(x) = f(x) then set up the table of variations of g.
- 4) Determine the coordinates of the point A on (C) where the tangent (T) is parallel to (D).
- 5) (C) intersects the x-axis in two points with abscissas α and β where $\alpha < -1$ and $\beta > 2$.
 - a- Draw (D), (T) and (C).
 - b- Denote by $A(\alpha)$ the area of the region limited by (C), x-axis and the two lines with

equations
$$x = \alpha$$
 and $x = 1$. Prove that $2 < A(\alpha) < \frac{1}{2} \left(2 + \frac{1}{e}\right)^2$.