السيت ۲۰۱۹ تموز ۲۰۱۹

مباراة دخول إدارة أعمال الجامعة اللبنانية كلية العلوم الاقتصادية وإدارة الأعمال

عدد المسائل: أربع مسابقة في مادة الرياضيات الاسم: المدة: ساعتان الرقم:

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

Each one of the following questions has one and only one correct answer out of the proposed answers.

Choose, with justification, the correct answer to each question.

	ose, with justification, the correct answer to each to	ucsuon.		
N^0	Question	A	В	C
1	A box contains 60 bottles of juice. 10 % of the bottles of juice are orange juice. 4 bottles of juice are selected randomly and simultaneously from this box. How many selections contain exactly 3 bottles of orange juice among the 4 selected bottles?	3422	1080	20
2	Each week, Jad arrives late to school 2 days out of 5 days and Jana arrives late to school 1 day out of 5 days. On a certain day, what is the probability that Jad arrives late to school and Jana arrives on time?	0.08	0.12	0.32
3	(C) and (G) are the respective representative curves of two functions f and g defined, on \mathbb{R} , as $f(x) = x^2$ and $g(x) = -x^2 + 8$. The area of the shaded region is expressed as: $ \frac{2\sqrt{2}}{(G)} $	$\int_{-2\sqrt{2}}^{2\sqrt{2}} (f(x) - g(x)) dx$	$\int_{-2}^{2} (g(x) - f(x)) dx$	$\int_{-2}^{2} (f(x) - g(x)) dx$
4	The following table shows the probability distribution of a random variable X:	a = 3 and b = 0.15	a = 0.1 and b = 0.15	a = 0.15 and b = 0.1

II- (4 points)

A scientific electronic journal was launched in 2015 and is accessible only by subscription. In 2015, the journal had 5 000 subscribed members.

Each year, 20 % of the subscribed members of the preceding year unsubscribe and 300 new members subscribe. For all integers $n \ge 0$, denote by U_n the number of subscribed members for the year (2015 + n). Thus, $U_0 = 5\,000$ and $U_{n+1} = 0.8U_n + 300$.

- 1) a- Calculate U₁.
 - b- The annual subscription fee for a new member is 100 000 LL, whereas the renewal subscription fee is reduced by 10 %.
 - Calculate the total income of this journal collected from the subscription fees for the year 2016.
- 2) Consider the sequence (V_n) defined as $V_n = U_n 1500$ for all $n \ge 0$.
 - a- Show that (V_n) is a geometric sequence whose common ratio and first term are to be determined.
 - b- Verify that $U_n = 3500 \times 0.8^n + 1500$.
 - c- Show that (U_n) is a strictly decreasing sequence.
 - d- Which year will the number of subscribers be less than 2 000 for the first time? Justify.

III- (4 points)

Given two urns U and V.

- Urn U contains two red balls and three green balls.
- Urn V contains four red balls and six green balls.

Part A

One ball from urn U and one ball from urn V are randomly selected.

- 1) Calculate the probability that the two selected balls are red.
- 2) Calculate the probability that the two selected balls have different colors.

Part B

A fair die is rolled. The die has six faces numbered 1 to 6.

- If the die shows 1 or 6, then two balls are randomly and simultaneously selected from urn U;
- otherwise, two balls are randomly and simultaneously selected from urn V.

Consider the following events:

- E: "The die shows 1 or 6".
- F: "The two selected balls are red".
- 1) a- Calculate the probability P(F/E) and deduce that $P(E \cap F) = \frac{1}{30}$
 - b- Calculate P(F).
- 2) The two selected balls are red. Calculate the probability that the die neither shows 1 nor 6.
- 3) Let X be the random variable equal to the number of the selected red balls.
 - a- Verify that $P(X = 0) = \frac{29}{90}$.
 - b- Determine the probability distribution of X.

IV- (8 points)

Consider the function f defined over $]-\infty$, $+\infty[$ as $f(x)=3-xe^{1-x}$.

Denote by (C) its representative curve in an orthonormal system (0; 1,1).

- 1) Determine $\lim_{x \to 0} f(x)$ and calculate f(-1).
- 2) a- Show that the line (d) with equation y = 3 is an asymptote to (C).
 - b- Study, according to the values of x, the relative positions of (C) and (d).
- 3) Verify that $f'(x) = (x-1)e^{1-x}$ and set up the table of variations of f.
- 4) The line (D) with equation y = 2.5 intersects (C) at two points of abscissas α and β with $0.22 < \alpha < 0.24$. Show that $2.67 < \beta < 2.69$.
- 5) Draw (C), (d) and (D).
- 6) Calculate the area of the region bounded by (C), (d) and the two lines with equations x = -1 and x = 1.
- 7) Consider the function h defined as $h(x) = \ln(3 f(x))$.
- a- Verify that the domain of definition of h is $]0,+\infty[$.
- b- Determine $\lim_{x\to 0} h(x)$ and $\lim_{x\to +\infty} h(x)$. Calculate h(1).
- c- Which of the following three curves is the representative curve of the function h? Justify.

d- Solve the equation $h(x) = -\ln 2$ then solve the inequality $h(x) > -\ln 2$.