السبت ۱۹ أيلول ۲۰۲۰		مياراة الدخول	الجامعة اللبنانية	
			كليَّة العلومُ الاقَّتصادية	
			وإدارة الأعمال	
	الاسم:	(74. :4. 11 74. à 774	المدة: ساعة وربع الساعة	
	الد قد	مسابقة في مادة الرياضيات	(40,41 VO)	

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (6 points)

In a country, the number of people y_i who were monthly infected by the Corona virus COVID-19 from March 2020 till August 2020 and the rank of the corresponding month x_i are represented in the following table:

Year 2020	March	April	May	June	July	August
Rank of the month: x _i	1	2	3	4	5	6
Number of infected people: y _i	200	250	504	555	942	1047

- 1) Determine the center of gravity $G(\bar{x}; \bar{y})$.
- 2) Find the coefficient of correlation r and interpret the result thus obtained.
- 3) Determine an equation of the regression line $(D_{y/x})$ of y in terms of x.
- 4) Suppose that the preceding model remains valid till the end of the year 2020. Estimate the number of people in this country who will be infected by COVID-19 during November 2020.
- 5) Calculate the percentage increase in the number of infected people in this country between May 2020 and June 2020.

II- (6 points)

In 2010, the owner of a shop had 1000 clients.

Each year, the number of clients of this shop decreases by 25% with respect to the preceding year and increases by 400 new clients.

Denote by U_n the number of clients in (2010 + n), where $n \in \mathbb{N}$.

Thus, $U_0 = 1000$.

- 1) Verify that $U_1 = 1150$.
- 2) Justify that $U_{n+1} = 0.75U_n + 400$ for every n.
- 3) Let (V_n) be the sequence defined as $V_n = U_n 1600$ for every n.
 - a- Show that (V_n) is a geometric sequence with common ratio 0.75. Calculate its first term V₀.
 - b- Verify that $U_n = 1600 600(0.75)^n$ for every n.
- 4) Find the number of clients of the shop in the year 2019.
- 5) The owner of the shop has a target to reach more than 1700 clients per year. Will his target be achieved? Justify.

Page 1 of 2

III- (8 points)

Consider the function f defined over $]-\infty$, $+\infty[$ as $f(x) = (2x+2)e^{-x+1} + 1$.

Denote by (C) the representative curve of f in an orthonormal system $(0; \vec{1}, \vec{j})$.

- 1) Determine $\lim_{x\to -\infty} f(x)$ and calculate f(-1.25).
- 2) a- Show that the line (d) with equation y = 1 is an asymptote to (C).b- Determine the coordinates of the point A, the intersection of (C) and (d).
- 3) Verify that $f'(x) = -2xe^{-x+1}$, then set up the table of variations of f.
- 4) a- Show that the equation f(x) = 0 has a unique root α . b- Verify that $-1.1 < \alpha < -1$.
- 5) Draw (d) and (C).
- 6) Let g be the function defined over $]-\infty$, $+\infty[$ as $g(x)=e^{f(x)}$.
 - a- Verify that g'(x) has the same sign as f'(x) for every real number x.

Page 2 of 2

b- Set up the table of variations of g.