Lebanese University
Faculty of Agricultural Sciences and
Veterinary Medicine

Academic year 2021-2022 Duration: 90 min

Entrance exam in chemistry (GS)

Check the right answer(s) in the table at the last page as per the following model:

I'm doing an exam:

- a) In chemistry
- b) In physics
- c) In biology
- d) At the faculty of agricultural sciences and veterinary medicine.

9	b	c	d
X			X

1- The kinetic study of this reaction shows that:

$$CH_3CH_2OH$$
 Cu $CH_3CHO + H_2$ $300^{\circ}C$

- a) the concentration of CH₃CH₂OH increases with time.
- b) the concentration of H₂ decreases with time.
- c) The rate of disappearance of CH₃CH₂OH is equal to the rate of formation of CH₃CHO
- d) The rate of formation of CH₃CHO is higher than the rate of formation of H₂

2-- In this reaction:

$$CH_3CH_2OH$$
 Cu $CH_3CHO + H_2$ $300^{\circ}C$

- a) Catalyst increases the rate of reaction.
- b) Catalysis by Cu is a heterogeneous catalysis
- c) Catalysis by Cu is a homogeneous catalysis
- d) Catalysis by Cu is a selective catalysis

3- In a autocatalysis reaction

- a) One of the reagents acts as a catalyst.
- b) One of the products acts as a catalyst.
- c) We add an acid catalyst.
- d) We add a metallic catalyst.

 4- In the Brönsted theory, an acid can: a) accept a proton. b) accept an electron. c) give an electron. d) give a proton. 		
5- In the following acid/base couples, what is an interpretation of the following acid/base couples, where the following acid/base couples is a following acid/base couples.	ich are written correc	tly?
6- Two litres of Na ₂ CO ₃ (106 g/mole) co	ntain 10.6 g of this sal	t, the concentration of
this solution is : a) 0.025 mol.L ⁻¹ b) 0.05 mol.L ⁻¹		
7- We add 100 mL of a solution of Na NaCl 0.2 mol/L, the concentration of a) 0.2 mol.L ⁻¹ b) 0.1 mol.L	${\sf f}$ ${\sf Na}^{\scriptscriptstyle op}$ ions in the final ${\sf s}$	olution is equal to:
8- 400 mL of aqueous solution contain	s 2,12 g of Na ₂ CO ₃ (10	06 g/mole). The molar
concentration of Na ⁺ in this solution a) 0.2 mol.L ⁻¹ b) 0.05 mol.l	is:	
9- The pH of a solution is 3. The concer a) 10^{-2} mol.L ⁻¹ b) 10^{-4} mol.L	ntration of ions $\mathrm{H_3O}^+$ is	s equal to :
10- A solution has a pH = 2, its concentr a) 10^{-3} mol.L ⁻¹ b) 10^{-11} mol.L ⁻¹	ation in hydroxide ion c) 10 ⁻⁷ mol.L ⁻¹	s OH is: d) 10 ⁻¹² mol.L ⁻¹
 11-10 mL of a hydrochloric acid E hydroxide NaOH of concentration NaOH equal to 10 mL is found. I- During the titration: a) The pH of the solution increases b) The pH of the solution decreases c) The titration curve has 2 points of inflection of the solution of the solution decreases 	$C = 10^{-1} \text{ mol.L}^{-1}$. An	titrated with sodium equivalent volume of
d) The titration curve has a buffer zone		
II- The concentration of the solution S a) 10^{-2} mol.L ⁻¹ b) 10^{-1} mol.L ⁻¹	is: c) 1 mol.L ⁻¹	d) 10 ⁻⁴ mol.L ⁻¹

	III- pH o	of the s	olution S before titra	ation is:		
a)	4		b) 2	c) 1	d) 7	
	IV- At the	end o	f titration, the pH of	the solution is:		
a)	7		b) 13	c) 11	d) 1	
	12-Which	volun	ne of water we need	add to 500 mL of	HCl solution 0.15 mol.	L ⁻¹ for
	obtain	ed so	lution 0.1 mol.L ⁻¹			
	a) 750	0 mL	b) 500mL	c) 250 mL	d) 200 mL	
	13-I- We	mix 10	mL of NaOH 0.1 n	nol.L ⁻¹ and 90 ml	L of distilled water: (so	olution
	A), p	H of s	olution A is:			
	a) 13		b) 12	c) 11	d) 10	
	II- We	add to	solution A 10 mL o	f HCl 0.01 mol.L	-1 calculate pH of the ob	tained
	solı	ution.				
	a) 12	.91	b) 12	c) 11	d) 11.91	
	14- We a	$\mathbf{dd} \ \mathbf{V_1}$:	= 100 mL of H ₂ SO ₄	$(C_1 = 5.10^{-2} \text{ mol.L})$	$^{-1}$) at $V_2 = 100 \text{ mL of HN}$	$1O_3$
					ds. The pH of the mixtur	
a)	12.0		b) 1.22	c) 2.5	d) 3.9	
	15 -T	he inte	rmolecular dehydra	tion of an alcohol	product:	
	a) an al		b) an aldehyde		d) an ether	
	16 r) 4 1	(-1 -			
			l-ol is :	on 2 ol		
	a)		nctional isomer of but			
	b)	•	sitional isomer of but		•	
	c)		soluble than butan-2	-Ol		
	d)	More	e volatile butan-2-ol.			
	17-The	e oxida	tion reaction of mol	ecule in organic cl	nemistry can be:	
	a)	An a	ddition of a hydroger	n atom		
	b)	An a	ddition of a oxygen a	tom		
	c)	An e	limination of a water	molecule		
	d)	An a	ddition of a water mo	lecule		

18- What is the correct name of the following	ng compound?
$(CH_3)_2CH$ — CH OH — CH_2 — CH_3	
a) 1-ethyl-1-methylethanol	c) 1,1-dimethylpropan-1-ol
b) 2-hydroxy-2-methylbutan	d) 2-methylpentan-3-ol
19- Acetic acid can be obtained by:	
 a) Hydrogenation of ethylene 	
b) Oxidation of ethanol	
c) Hydrolysis of dimethylether	
d) Hydrogenation of ethanal	
20- Gas produced in the following reaction	is:
$CH_3CH_2OH + Na \longrightarrow$	
a) O ₂ b)CH ₄ c) C	(O d) H ₂
a) O_2 b)CH ₄ c) C	3) 2-2
21 -How many isomers there is for C ₃ H ₈ O:	
a) Two isomers	c) Three isomers
b) Four isomers	d) Five isomers
,	
22- The following reaction is a :	
CH ₃ CH ₂ OH SOCl ₂	
a) substitution reaction b) addition reaction	n c)oxidation reaction
d)hydrolyzes reaction	
,	
23 - Gas produced in the following reaction is	3 :
CH ₃ CH ₂ OH SOCl ₂	
a) O_2 b) H_2 c) CO	d) SO ₂

Answer table: put X to the right answer in the table below:

Number	a	b	c	d
1				
2				
3				
4				
5				
//////	1////	/////	/////	/////
6				
7				
8				
9				
10				
11-I				
11-II				
11-III				
1 1-IV				
12				
13-I				
13-II				
14				
//////	1////	/////	1111	/////
15				
16				
17				
18				
19				
20				
21				
22				
23				