

All CALCULATORS are prohibited.

Exercise I. CHOOSE A UNIQUE CORRECT ANSWER WITH JUSTIFICATION. \triangleright 10 × 1.5 points Write down the correct answer <u>cleary</u> and <u>circle</u> it. Then, justify your answer. *Evrey answer without justification will not be taken into consideration.*

1. In the space of Oxyz, given a plane (P): 2x-2y+z-1 = 0 and a straight line (D): $\begin{cases} x = \frac{t}{2} - 1 \\ y = 1 - t \\ z = t + 2, \end{cases}$

with t real parameter. The angle made by (D) with the plane (P) is equal to : $\blacktriangleright \arcsin \frac{8}{9} \quad \blacktriangleright \ \arcsin \frac{17}{9} \quad \blacktriangleright \ \arccos \frac{8}{9} \quad \blacktriangleright \ \arcsin \frac{9}{8}$.

- 2. An urn contains 10 balls numbered from 1 to 10. If three balls are drawn simultaneously at random, then the probability that the numbers of the obtained balls are such that one is odd and the other two are even, is :
 - $\blacktriangleright \ \frac{1}{8} \qquad \blacktriangleright \ \frac{5}{12} \qquad \blacktriangleright \ \frac{5}{6} \qquad \blacktriangleright \ \frac{6}{5}.$
- 3. Consider the real function $g(x) = \frac{1}{1 + e^{-x}}$. Studying its variation, we conclude that g is :
 - ▶ strictly increasing on \mathbb{R} , and admits two horizontal asymptotes y = 0 and y = 1.
 - ▶ increasing on \mathbb{R}^+ , and admits two asymptotes $y = \frac{1}{2}$ and y = 0.
 - ▶ strictly increasing on \mathbb{R} , and admits two asymptotes y = 0 and x = 0.
- 4. Consider, in \mathbb{C} , the equation (E): $z^3 (1+2i)z^2 + (1+i)z 2(1+i) = 0$. If one root of (E) is $z_1 = 1 + i$, then the other two roots, z_2 and z_3 , are equal to : $\triangleright z_2 = -i, z_3 = i+2 \quad \triangleright z_2 = i, z_3 = 2i \quad \triangleright z_2 = -i, z_3 = 2i \quad \triangleright z_2 = z_3 = -i$.
- 5. Given the two planes, (P) : x + y + z = 1 and (Q) : 2x y + 3z = 0. Let (R) be the plane passing through the point A(1,1,1) and perpendicular to both planes (P) and (Q). The equation of (R) is : $\blacktriangleright -4x + y + 3z + 1 = 0$ $\blacktriangleright 4x - y - 3z = 0$ $\blacktriangleright 2x - y - z = 0$ $\blacktriangleright 4x - y + 3z = 0$.
- 6. Consider the complex number z = x + iy; $(x, y) \in \mathbb{R}^2$, with M its image in the Oxy plane. Let $Z = \frac{z \overline{z} + 2}{z + 1 i}$. If Z is real, then the set of M is the : \triangleright circle $(x+1)^2 + (y-1)^2 = 1$ \triangleright line y = -x \triangleright hyperbola $y = -\frac{1}{x} \triangleright$ hyperbola xy = 1.
- 7. If a weighted cubic die is made in such a way that, when it is tossed, the probability of the number 1 is 0.8, and the other five numbers from 2 to 6 are <u>equiprobable</u>, then on throwing this die once, the probability of obtaining an odd number is :
 ▶ 0.88 ▶ 0.80 ▶ 0.84 ▶ 0.82.
- 8. The following real function $f(x) = \ln(\ln(\ln x^2))$ is defined on : $\models] -\infty, -1[\cup]1, +\infty[\models \mathbb{R} \setminus \{-\sqrt{e}, -1, 0, 1, \sqrt{e}\} \models] -\infty, -\sqrt{e}[\cup]\sqrt{e}, +\infty[\models \mathbb{R}^*.$

Exercise II. CHOOSE THE UNIQUE CORRECT ANSWER <u>WITHOUT</u> JUSTIFICATION. ▶ 25 points Copy the table, according to the model below, to your answer sheet and fill in the correct answer of each question without justification.

Number of Question	Chosen answer
$\mathbf{Q1}$	
$\mathbf{Q2}$	
÷	
$\mathbf{Q25}$	

- Q1. The plane 3x + y + z 1 = 0 and the straight line $\frac{x}{2} = \frac{1-y}{2} = \frac{-z}{2}$ are : \blacktriangleright parallel \blacktriangleright perpendicular \blacktriangleright intersecting \blacktriangleright confounded.
- Q2. The parabola $y^2 = 4x 1$ admits a vertex at the point : $\blacktriangleright (\frac{1}{2}, 0) \ \blacktriangleright (2, 1) \ \blacktriangleright (\frac{1}{4}, 0) \ \blacktriangleright (2, 3).$
- Q3. $x^2 + y^2 = 2x$ is a circle of radius equals to : $\blacktriangleright -1 \qquad \flat \frac{\sqrt{2}}{2} \qquad \flat \sqrt{2} \qquad \flat 1.$

Q4. Given the sequence of real numbers $\frac{-1}{4}, \frac{1}{7}, \frac{3}{10}, \dots$ Then, the next term is : $\blacktriangleright \frac{4}{11}$ $\blacktriangleright \frac{4}{13}$ $\blacktriangleright \frac{5}{12}$ $\blacktriangleright \frac{5}{13}$.

- Q5. $\int \frac{\cos x}{2\sin x 3} dx \text{ equals to } :$ $\blacktriangleright \frac{1}{2} \ln(2\sin x - 3) + C \quad \blacktriangleright \frac{1}{2} \ln|2\sin x - 3| + C \quad \blacktriangleright \frac{1}{2} \ln|2\sin x| - 3 \quad \blacktriangleright \ln|2\sin x - 3| + C.$
- Q6. The straight line $\frac{x}{2} = \frac{y-1}{3} = \frac{z+1}{1}$ and the z-axis are : \blacktriangleright skew \blacktriangleright intersecting \rightarrowtail parallel \blacktriangleright orthogonal
- **Q7.** If we join the mid points of a square whose side is 6 cm, then the area of the new obtained square is :
 - ► 9 cm² ► 12 cm² ► 16 cm² ► 18 cm².
- **Q8.** One angle of a triangle is 30° , and the difference between the other two angles is 70° , then the largest angle in the triangle is :
 - ▶ 70° ▶ 110° ▶ 120° ▶ 40° .
- Q9. Given the sequence $-3, 0, 3, 6, 9, \ldots$ then the sum of the first ten terms is : $\triangleright 110 \quad \triangleright 105 \quad \triangleright 95 \quad \triangleright 90.$

Q10.
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 - 2}}{\sqrt[3]{x^3 + 3}} =$$

$$\blacktriangleright 1 \qquad \blacktriangleright \frac{2}{3} \qquad \blacktriangleright 0 \qquad \blacktriangleright -2.$$

Q11.
$$\lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{x^2} =$$

 $\blacktriangleright +\infty \quad \blacktriangleright 1 \quad \blacktriangleright \text{ indeterminate } \blacktriangleright \frac{1}{4}.$

- Q12. The non trivial general solution of the differential equation $y' y \sin x = 0$ is : $\triangleright Ce^{\sin x} \quad \triangleright Ce^{\cos x} \quad \triangleright Ce^{-\cos x} \quad \triangleright 0.$
- Q13. The function $y = x^x$ is increasing over the interval : $[b]]0, +\infty[$ $[b]]e, +\infty[$ $[b]]\frac{1}{e}, +\infty[$ $[b] [\frac{1}{e}, +\infty[.$
- Q14. A student has to answer 10 out of 13 questions on an exam. How many choices he has, if he **must** answer the first two questions :
 - answer the first two questions : $\triangleright C_{13}^{10} \rightarrow C_{11}^8 \rightarrow C_{11}^8 \rightarrow C_{11}^8 \cdot C_{11}^2 \rightarrow C_{13}^8$
- Q15. The function $y = \frac{\sqrt{1-x}}{x-2}$ admits as asymptotes : $\Rightarrow x = 0; y = 0$ $\Rightarrow y = 0$ only $\Rightarrow x = 2; y = 0$ $\Rightarrow x = 2; y = 2.$
- **Q16.** The sketched solid is formed of four small identical cubes. The surface area of a small cube is 24 cm². What is the surface area of the solid?

Q17. With the data in the opposite figure, how much the unknow angle (?) would be equal to ? $\triangleright 10^{\circ} \quad \triangleright 40^{\circ} \quad \triangleright 20^{\circ} \quad \triangleright 30^{\circ}$.

Q18. HIJL is a square. The triangles IJF and JKL are equilateral. If HL=1, then what would be the segment FK equal to?
▶ √2 ▶ √3 ▶ √6 - 1.

 $\blacktriangleright \sqrt{2}$ $\blacktriangleright \frac{\sqrt{3}}{2}$ $\blacktriangleright \sqrt{3}$ $\blacktriangleright \sqrt{6} - 1.$

- **Q19.** The figure below represents the front view of a solid, and its view from above. Among the four proposed figures I, II, III and IV, which one represents the solid seen from the left?
 - ▶ la figure I ▶ la figure II ▶ la figure III ▶ la figure IV.

Q20. Which one among the following four figures cannot be drawn without raising the pencil and without tracing twice any of the segments?

Q21. Consider two great circles tangent to each other with radius \mathbf{R} and with centers at two opposite vertices of a square. With centers at the other two vertices, two small circles of the same radius \mathbf{r} are traced such that each circle is tangent to the two great circles. How much is the ratio $\frac{\mathbf{R}}{\mathbf{r}}$?

Q23. The areas of the faces of a rectangular brick are S, T and U (see figure). What is the volume of the brick?

$$\blacktriangleright STU \qquad \triangleright \sqrt{STU} \qquad \triangleright \sqrt{ST + TU + US} \qquad \triangleright \sqrt[3]{STU}.$$

- **Q24.** One have to go from K to L following the arrows (see figure). How many differents routes can be used?
 - $\blacktriangleright 6 \qquad \blacktriangleright 8 \qquad \blacktriangleright 9 \qquad \blacktriangleright 10.$

Q25. Eight semi-circles of the same radius are drawn in a square of side 4 (see figure). How much is the area left blank in the square?

 $\blacktriangleright 2\pi$ $\blacktriangleright 8$ $\blacktriangleright \pi + 6$ $\blacktriangleright 3\pi - 2$.

