مباراة الدخول للعام الجامعي 2024-2025 مسابقة في الرياضيات ـ قسم علم البياثات ـ فرنسي

الجامعة اللبتانية كلية الاعلام مدة الامتحان: ساعة و نصف

Répondre aux questions suivantes:

Exercice 1

Partie A:

On considère la fonction g définie sur $]-\infty$; $+\infty[$ par $g(x)=xe^x-1$

- 1) Calculer les limites de g aux bornes ouvertes de son domaine de définition.
- 2) Calculer g'(x) puis dresser le tableau de variation de g.
- 3) a- Démontrer que l'équation g(x)=0 admet une racine unique α sur \mathbb{R} et vérifier que : 0,5< α < 0,58.
 - b- Déduire le signe de g(x)

Partie B:

Soit la fonction f définie sur $]-\infty$; $+\infty[$ par $f(x) = (x-1)(e^x-1)$, on désigne par (C) sa courbe représentative dans un système orthonormé $(0, \vec{l}, \vec{j})$ (unité graphique = 2cm).

- 1) a-Déterminer $\lim_{x \to -\infty} f(x)$ et montrer que la droite (d) : y=-x+1 est un asymptote a (C). b- Etudier la position relative de la courbe (C) par rapport a la droite (d).
- 2) Déterminer $\lim_{x\to +\infty} f(x)$ et calculer f(2).
- 3) Démontrer que f'(x) = g(x) puis dresser le tableau de variation de f. (on prend f'(x) < 0 pour $x < \alpha$).
- 4) Montrer que la fonction f admet un point d'inflexion I dont les coordonnées sont à déterminer.
- 5) (T) est parallèle a (d) et tangente a (C) en A. Calculer les coordonnées de A.
- 6) Vérifier que $f(\alpha) = 2 \alpha \frac{1}{\alpha}$
- 7) Prendre $\alpha = 0.57$ et tracer (d) et (C).

Exercice 2

Le tableau ci-dessous donne la pression artérielle d'un groupe de femmes, ainsi que leur poids.

Poids en Kg, xi	55	58	60	64	65	70
Pression artérielle,	13.2	13.5	13.8	14.6	15.2	15.8
y _i						

- 1. Calculer les moyennes \bar{x} et \bar{y} .
- 2. Représenter, dans un repère orthonormé, le nuage des points associe à cette série, ainsi que le point moyen G.
- 3. a. Calculer la covariance des variables x_i et y_i .
 - b. Calculer les variances des variables x_i et y_i .
 - c. Calculer le coefficient de corrélation des variables x_i et y_i et interpréter le résultat.
- 4. a. Déterminer l'équation de la droite de régression $D_{Y/X}$ de Y en fonction de X.
 - b. Tracer *Dy/x* dans le même système orthonormé.
- 5. Si ce modèle est vrai pour les femmes pesant entre 45 et 75 kg, estimer la pression d'une dame pesant 72 kg.

Exercice 3

Une urne contient 3 pièces équilibrées. Deux d'entre elles sont normales : elles possèdent un côté « Pile » et un côté « Face ». La troisième est truquée et possède deux côtés « Face ».

On prend une pièce au hasard dans l'urne et on effectue de manière indépendante des lancers successifs de cette pièce. On considère les évènements suivants :

B: la pièce prise est normale. \bar{B} : la pièce prise est truquée.

P: on obtient « Pile » au premier lancer.

 F_n : on obtient « Face » pour les n premiers lancers. :

- 1) Quelle est la probabilité de l'évènement B?
- 2) Quelle est la probabilité de l'évènement P sachant que B est réalisé ?
- 3) Calculer la probabilité de l'événement $P \cap B$, puis de l'évènement $P \cap \overline{B}$. En déduire la probabilité de l'évènement P.
- 4) Calculer la probabilité de l'évènement $F_n \cap B$ puis de l'évènement $F_n \cap \overline{B}$. En déduire la probabilité de l'évènement F_n .